Scatter Radiation Over and Under the Apron With a New Shielding System: Is It Time For Lighter Aprons?

Robert F. Wilson, MD

For

Sergey Gurevich, MD Demetris Yannopoulos, MD Ganesh Raveendran, MD, MS Jason Bartos, MD, PhD University of Minnesota, Minneapolis, MN, USA

Disclosures

Study Authors: No Disclosures Study Presenter: Founder and CEO, Egg Medical, Inc.

Background

- Scatter radiation exposure in hospital x-ray labs has been linked to an increased risk of cancer, cataract, and vascular disease
- Current radiation shielding for personnel working in the scatter radiation field is usually limited to a table shield, a hanging shield, and a shielding apron worn by personnel
- The shielding effectiveness of aprons is expressed in lead "equivalence"
- A minimum shielding apron effectiveness is usually mandated by government regulatory agencies: usually 0.25 to 0.5mm Pb equivalence
- Due to the weight and awkward ergonomics of aprons, prolonged apron usage is associated with significant orthopedic problems for the user

Background

• Shielding aprons should be viewed more as radiation filters than shields

Lead	X-ray			
Equivalent	transmission			
0.25 mm =	19% leak			
0.375 mm = 10% leak				
0.50 mm =	= 4% leak			
0.70 mm =	= 1% leak 🖕			
	· · · · · · · · · · · · · · · · · · ·			

- Next-Generation scatter radiation shielding systems that dramatically reduce operator radiation exposure have been recently introduced
- Given the effectiveness of Next-Gen Shielding, can the weight (and Pb equivalency) be safely reduced?

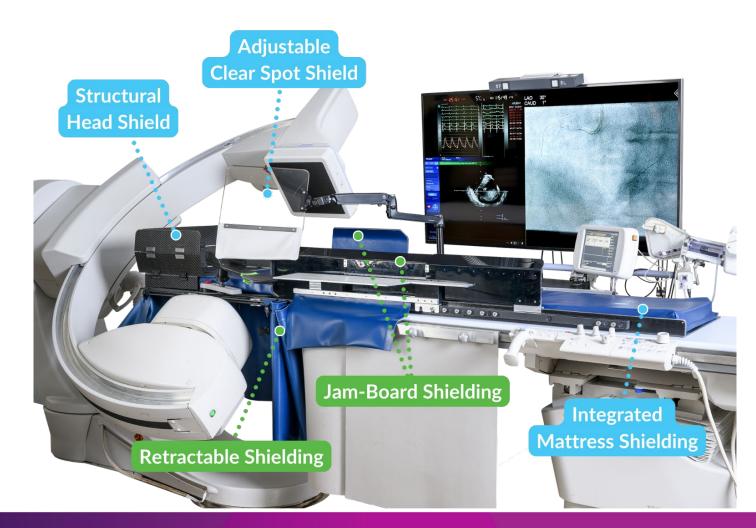
Study Aims

Compare <u>operator scatter radiation exposure over and under a</u> <u>shielding apron</u> during cardiac cath lab procedures <u>with and without</u> <u>Next-Generation Radiation shielding</u>

Standard Shielding

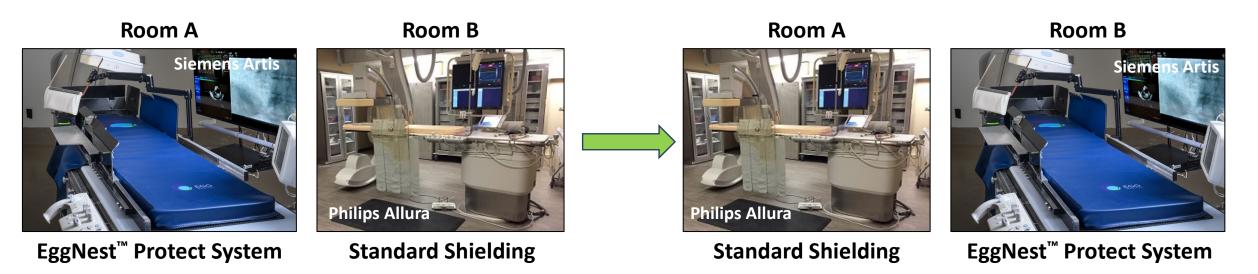
Acrylic hanging shield (0.5mm Pb equivalence) Lower table shield (0.5mm Pb equivalence)

Standard Shielding


EggNest Protect Radiation Protection System (Egg Medical, Inc., Arden Hills, MN, USA)

EggNest[™] Protect System

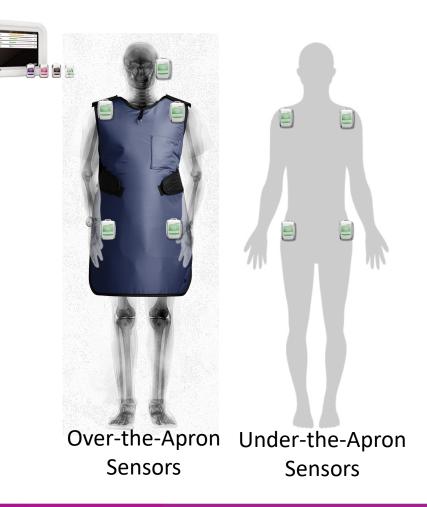
- Replaces table mattress with carbon fiber shell and shielded mattress
- Moves with x-ray table
- 360° Protection Protects Everyone working in the Lab



Study Design

- Study conducted in Cath Lab Rooms A & B over 4 weeks
- Standard Shielding in one room, EggNest system in the other
- The operator performed cases alternately in Rooms A & B

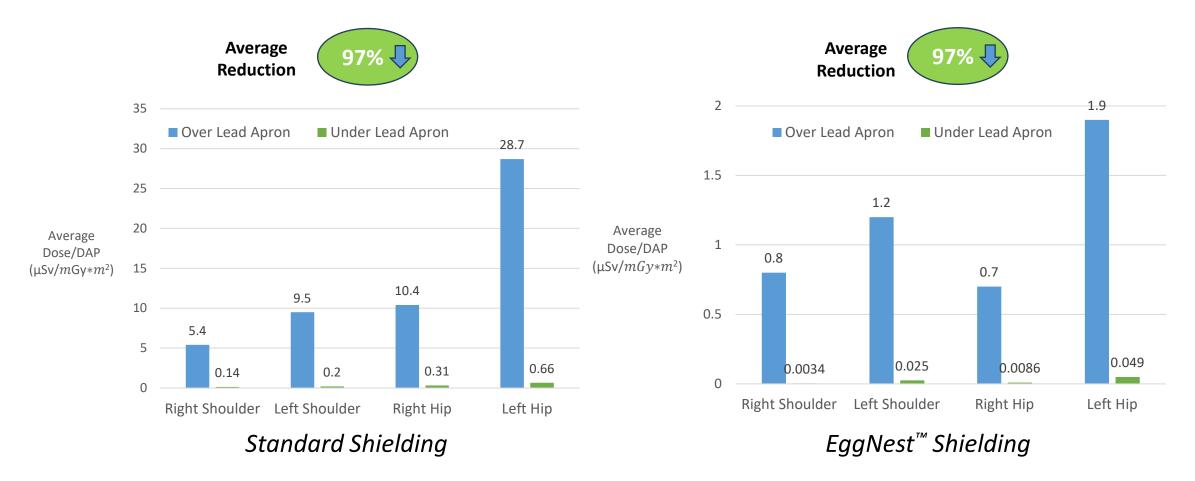
Weeks 1 & 2


Weeks 3 & 4

Measurement of Radiation Exposure

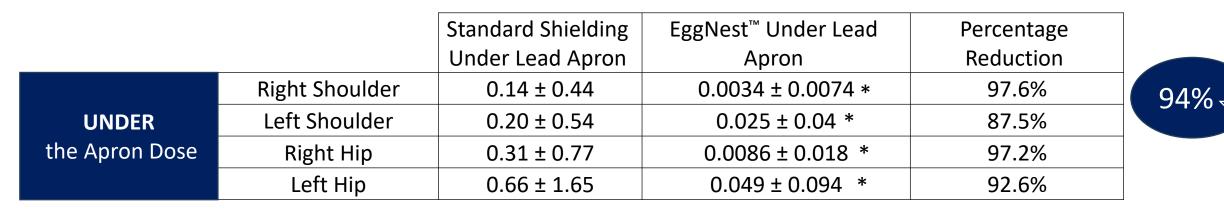
- Radiation exposure was measured using an i3 measurement system (Fluke Biomedical, Everett, WA, USA) with 9 sensors placed on the operator
 - ➤ 4 over the apron (right and left shoulders, right and left waist)
 - ➤ 4 under the apron (similar positions)
 - ➤ 1 over left ear
- After each case, sensor data was downloaded to determine cumulative radiation exposure dose at each position during case
- The patient Dose-Area Product (DAP), fluoroscopy time, weight, BMI, and procedure type were recorded
- Operator radiation exposure normalized for patient DAP
 - Total sensor exposure/DAP

Case Demographics


 51 patients were studied, 28 using standard Shielding and 23 using the EggNest[™] System

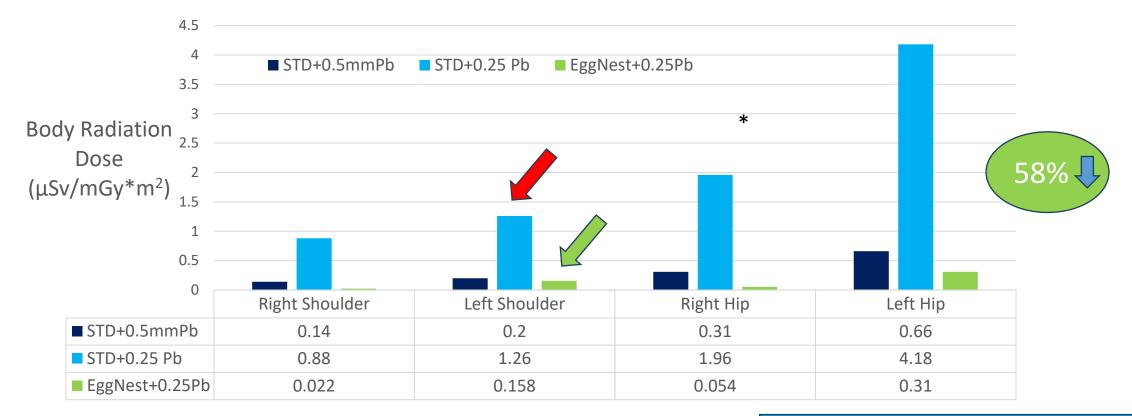
oyotenn	Standard Shielding (n = 28)	EggNest (n = 23)	p value
DAP ($\mu GymGy * m^2$)	6.0 ± 6.5	7.8 ± 8.5	0.40
Fluoroscopy Time (min)	10.7 ± 10.6	13.5 ± 17.0	0.49
Patient Weight (kg)	90.3 ± 16.9	92.3 ± 28.1	0.76
PCI cases	8	8	
Coronary Angiograms	13	11	
Right Heart Cath (IJ access)	7	4	

mean±SD


Body Radiation Dose Over and Under 0.5mmPb Shielding Apron

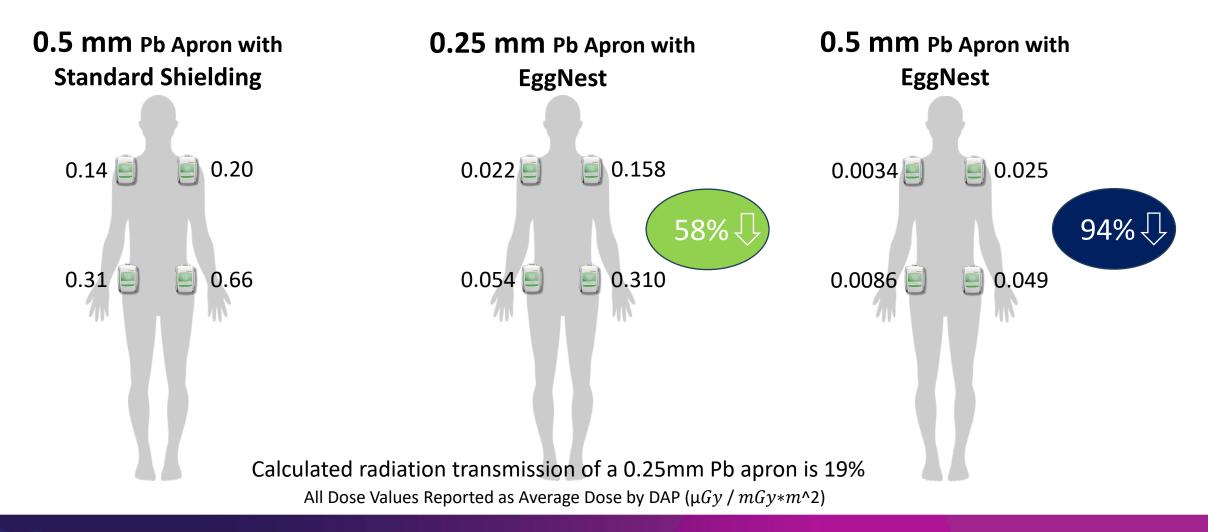
Operator Radiation Exposure With and Without EggNest[™]

		Standard Shielding Over Lead Apron	EggNest [™] Over Lead Apron	Percentage Reduction
OVER the Apron Dose	Right Shoulder	5.4 ± 8.3	0.8 ± 0.5 *	85.2%
	Left Shoulder	9.5 ± 19.5	1.2 ± 0.9 *	87.4%
	Right Hip	10.4 ± 12.2	0.7 ± 0.7 *	93.3%
	Left Hip	28.7 ± 26.7	1.9 ± 1.2 *	93.4%


*p<0.01 vs Standard Shielding

All Dose Values Reported as mean dose/DAP (μ Sv/mGy*m^2) ±SD

90%


Effect of Using a 0.25mm Pb Apron on Body Radiation Dose Compared to Standard Shielding and a 0.5mmPb Apron

Radiation transmission of a 0.5mm Pb apron is 3% Calculated radiation transmission of a 0.25mm Pb apron is 19% *EggNest+0.25mmPb apron dose = EggNest dose outside apron dose * 0.19 Half the weight, 58%+ more protection

Under Apron Radiation Dose Comparison

Conclusions

- 0.5mm Pb equivalent shielding apron transmits 3% of the incident x-ray photons (97% effective)
- The received body dose using a 0.5mm Pb apron and an EggNest[™] Protect Shielding System is 94% less than standard shielding and a 0.5mm Pb apron
- The calculated body dose using a 0.25mm Pb apron (1/2 thickness) and an EggNest Protect shielding system is still 58% less than that using standard shielding with an apron that is twice the weight (0.5mm Pb)
- This study demonstrates that use of a Next-Generation Scatter Radiation Protection System can dramatically reduce operator radiation exposure
- Using Next-Generation Systems, operators may be able to markedly reduce the weight of additional protective equipment

